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a b s t r a c t

Recent advances in three-dimensional (3D) video technology have extended the range of our experience
while providing various 3D applications to our everyday life. Nevertheless, the so-called visual
discomfort (VD) problem inevitably degrades the quality of experience in stereoscopic 3D (S3D) displays.
Meanwhile, electroencephalography (EEG) has been regarded as one of the most promising brain im-
aging modalities in the field of cognitive neuroscience. In an effort to facilitate comfort with S3D displays,
we propose a new wellness platform using EEG. We first reveal features in EEG signals that are applicable
to practical S3D video systems as an index for VD perception. We then develop a framework that can
automatically determine severe perception of VD based on the EEG features during S3D video viewing by
capitalizing on machine-learning-based braincomputer interface technology. The proposed platform can
cooperate with advanced S3D video systems whose stereo baseline is adjustable. Thus, the optimal S3D
content can be reconstructed according to a viewer's sensation of VD. Applications of the proposed
platform to various S3D industries are suggested, and further technical challenges are discussed for
follow-up research.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Image-safety issues such as photosensitive epilepsy have been
studied for decades (ISO IWA3, 2005; Ujike, 2009). In particular,
visual discomfort (VD) has been cited as a bottleneck for stereo-
scopic 3D (S3D) video technology (Lambooij et al., 2009). Although
many technology-induced VD factors can be eliminated with ad-
vancements in hardware technology, factors intrinsic to VD, such as
vergence-accommodation conflict (VAC), persist as long as stere-
oscopy is used as 3D technology (Kim et al., 2014; Sweeney et al.,
2014; Vienne et al., 2014). Therefore, S3D content needs to be
reconstructed in consideration of the viewer's VD perception for
their safety (Hoffman et al., 2008; Onural, 2007).

To address this issue, the Moving Picture Experts Group (MPEG)
has developed an advanced stereoscopic video system (ASVS) (ISO/
IEC JTC1/SC29/WG11, 2009), as shown in Fig. 1. With this system,
the stereo baseline can be adjusted by selecting from a range of
Kang), AugustCho@gist.ac.kr
.ac.kr (S.C. Jun), kjyoon@gist.
virtual views. As a result, S3D content can be reconstructed adap-
tively based on the adjusted stereo baseline. A video-plus-depth
format is used to synthesize multiple virtual views at intermedi-
ate viewpoints between the original left and right views (Arican
et al., 2009; Ndjiki-Nya et al., 2011). The original left view and
one of the virtual views are then projected to the viewer as a final
stereoscopic video pair. However, the challenge is to select the best
virtual view among all candidates, and one way of doing so is to
refer to the VD experienced by viewers.

In light of the rising demand for VD evaluation technology, a
variety of both subjective and objective methods have been
researched. Subjective VD evaluations involve assessing VD directly
by asking subjects about VD symptoms (ITU, 2002; Kuze and Ukai,
2008). This approach has an advantage of evaluating the VD actu-
ally experienced by viewers so that it is often used to collect
ground-truth data. However, it requires high costs for experiments,
and the manual process restricts its applications. For more practical
usage, objective VD evaluations present the alternative to the
subjective approach. In 3D video-signal processing, a quantitative
degree of VD can be computed based on pre-defined models of VD
factors (e.g., disparity differences, object motion, etc.) (Choi et al.,
2010; Ha and Kim, 2011; Jung et al., 2012). Unlike subjective
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Fig. 1. Advanced stereoscopic video system (ASVS) with the proposed wellness platform to facilitate comfort with S3D video. The ASVS mitigates VD by changing the stereo
baseline. The proposed wellness platform provides VD feedback via an analysis of real-time EEG responses as a criterion for the best stereo baseline.
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methods, this approach is inexpensive, quick, and immune to the
influence of external stimuli. However, it is difficult to measure
personal factors (e.g., stereo acuity, user experience, etc.) and
environmental factors (e.g., viewer position, lighting conditions,
etc.) despite their significant effect on VD perception. Another
objective approach exploits research in cognitive neuroscience to
interpret abnormal bio-signals from viewers as an index for VD
perception (Schmidt et al., 1979; Stern et al., 1979; Ukai and Kato,
2002; Hagura and Nkajima, 2006; Hsieh et al., 2010). Because
abnormal bio-signals are directly elicited by viewers, this approach
is able to evaluate the VD actually perceived by viewers, regardless
of the hidden factors that affect VD perception.

Especially, thanks to the recent advances of the brain imaging
technology, many investigations using features of brain signals
have noticeably succeeded in assessing 3D visual discomfort or 3D
visual fatigue. Among them, functional magnetic resonance imag-
ing (fMRI) has begun to even localize the human brain regions
associated with the sensation of visual discomfort (Backus et al.,
2001; Georgieva et al., 2009; Durand et al., 2009; Tsao et al.,
2003), and in-depth investigations have been accomplished
owing to its high performance (Jung et al., 2015). However, when
developing an application for S3D video systems, we should
consider many practical issues such as price, safety, interruption of
natural viewing. For this reason, electroencephalography (EEG) is
regarded one of the most promising candidates for developing an
application because of its advantages for practical use. First of all,
EEG is cost effective. Although it relies on measurement performed
on the scalp, EEG has elaborate temporal resolution so that real-
time monitoring is possible during S3D video viewing. Also, EEG
is one of the most non-invasive brain-imaging modalities so that it
is proper to applications for daily life. In addition, EEG does not
require a special space that blocks interferences, and its volume is
getting smaller. Nowadays, even portable EEG systems (EMOTIV
EPOC and InteraXon Muse headsets) are used for ergonomic
research (Laghari et al., 2013).

In this paper, we suggest a concept of wellness-platform that
could lead to comfort and safe S3D viewing in coordination with
the ASVS. To this end, we exploited the EEG modality and its ad-
vantages, while overcoming the technical challenges of existing
EEG-based methods (see details in Section 2.2). Fig. 1 depicts the
overall concept of the proposedwellness platform. It first captures a
viewer's brain waves via EEG, and extracts reliable VD feedback
from the EEG data. Then, the VD feedback is referred to reconstruct
the S3D content adaptively according to the viewer's VD
perception. Notice that the main focus of this paper is to put the
well-known EEG-based VD evaluation technology to practical use,
instead of finding advances with respect to neuroscience.

The remainder of this paper is organized as follows. In Section 2,
we review recent EEG-based VD evaluation methods and the
technical challenges in their practical use. Our proposed viewing
experimental framework is presented in Section 3, and discrimi-
native EEG components are investigated in Section 4. We then
present a sophisticated framework that can automatically deter-
mine VD perception from the discriminative EEG components
during S3D viewing by capitalizing on machine-learning-based
brain-computer interface technology in Section 5. Eventually, we
discuss some guidance for future studies in Section 6, and present
our conclusions in Section 7.
2. Background

2.1. EEG-based VD evaluation technology

In addition to the advantages of the EEG modality with respect
to its practical use, EEG is well known for a significant and reliable
bio-signal reflecting mental fatigue (Murata et al., 2005; Liu et al.,
2010; Kar et al., 2010), and two types of EEG components are
mainly investigated: temporal components and oscillatory com-
ponents. Table 1 summarizes typical characteristics of specific EEG
components widely used in cognitive neuroscience. In general,
cognitive loading such as processing syntactic errors induces
mental fatigue (Vos et al., 2001), and people have difficulty for
processing visual stimuli or making decisions when they suffer
from mental fatigue (Murata et al., 2005; Liu et al., 2010). As a
result, if significant mental fatigue is perceived, amplitude of the
corresponding temporal EEG components is decreased while their
latency is delayed. Thus, in cognitive neuroscience, mental fatigue
can be measured by comparing the behavior of temporal compo-
nents before and after an event happening. Feature oscillatory
components reflect various states of a subject. For example, the
proportion of low frequency bands such as delta (d), theta (q), and
alpha (a) increases while the proportion of higher frequency bands
such as beta (b) decreases as alertness declines (Trejo et al., 2005).
In this point of view, EEG spectral changes are often investigated for
mental fatigue evaluation. Most typically the power of alpha band
in a fatigue condition is compared with that of alpha band in the
relaxation condition, and fatigue occurrence can be judged when
the power of alpha band is significantly attenuated (Reisman,1997).



Table 1
Characteristics of major temporal/oscillatory electroencephalography (EEG) components.

Category Name Detection range Reflection

Temporal Component P100 A positive peak around 100 ms Visual stimulus processing
P300 A positive peak around 300 ms Decision making (stimulus evaluation or categorization)
P600 A positive peak around 600 ms Syntactic phenomena processing
Delta 0.1e3 Hz Deep sleep, unconsciousness of mind
Theta 4 - 7 Hz Light sleep, drowsiness

Oscillatory Component Alpha 8 - 14 Hz Wakeful relaxation with closed eyes
Beta 15 - 30 Hz Active, busy, or anxious thinking and active concentration
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Recently, ratios of feature frequency bands (e.g, ðaþ qÞ=b;a=b, etc.)
and their power changes are also examined in a more sophisticated
way for better accuracy (Jap et al., 2009; Li et al., 2012).

On the basis of the above fundamentals, active attempt to
evaluate perceptual VD with EEG have been made in S3D video
processing field, and they have indeed succeeded in showing
discriminative brain responses to the VD perception capitalizing on
various EEG components. For instance, Emoto et al. (2005) provided
evidence that the VAC problem in S3D displays results in VD. They
tested the visually evoked cortical potential (VECP)1 before and
after an hour-long period of S3D video viewing. They found that the
P100 latency2 is also a reliable index for VD in response to various
vergence loads. Li et al. (2008) investigated the effects of binocular
parallax (2D or 3D) and the presentation time (3 min or 30 min) on
VD perception by measuring the event-related potential (ERP).3

Their results confirmed that the behavior of the P700 component
is much more discriminative than the conventional P300 compo-
nent.4 In addition, the distinctiveness of the P700 component be-
comes greater in the 3D condition than the 2D condition and in the
30-min condition than the 3-min condition, respectively. Similarly,
Mun et al. (2012) found that significantly reduced P600 amplitudes
and delayed P600 latencies5 after watching an hour of S3D video
via a ERP test. In addition to the methods based on the above
temporal components, it was confirmed that VD can also be
detected by comparing the power of feature frequency bands
before and after watching 2D and S3D content (Li et al., 2008; Frey
et al., 2014; Cho et al., 2012; Chen et al., 2013). For example, Li et al.
(2008) investigated the oscillatory EEG components during 30-min
2D/S3D viewing tests, and analyzed the high-frequency spectrum,
specifically beta bands (12e30 hz). Usually, the beta band reflects
the state of brain stress induced by anxiety or active concentration.
Similarly, they found that beta frequency bands increased after S3D
video viewing on most EEG channels. Chen et al. (2013) found that
the alpha and beta bands significantly decreased, and that the delta
band significantly increased as subjects viewed S3D content,
whereas the theta rhythm remained unchanged.
1 VECP measures the time required for a visual stimulus to travel from the eye to
the brain, and it is a useful index for detecting optic nerve problems.

2 P100 is a positive peak observed at 100 ms after the onset of the stimulus. Its
delay reflects fatigue of the interrelated extraocular and intraocular muscles and
the central nerve of the brain.

3 ERP measures the brain's response to perceptual experience, and it is used to
observe cognitive processing. Subjects are asked to react to target stimuli hidden as
infrequent occurrences among a series of frequent stimuli. In Li et al. (2008), a
close-distance random dot stereogram (RDS) surface and a long-distance RDS
surface were used as the infrequent stimulus (20%) and the frequent stimulus (80%),
respectively.

4 P300 is a positive peak observed at 300 ms after the onset of the stimulus. Its
delay reflects cognitive impairment in decision making when evaluating or cate-
gorizing stimuli.

5 P600 is a positive peak observed at 600 ms after the onset of the stimulus. Its
delay reflects processing syntactic errors.
2.2. Challenges to an ASVS as a wellness platform

In addition to the potential of EEG-based VD evaluation tech-
nology, the following technical challenges can enhance its func-
tionality as an objective VD evaluation tool. Current methods
mostly rely on comparing the subject's state before and after
watching a long S3D test sequence. Thus, real-time VD evaluations
as viewers watch S3D video are needed. Furthermore, discrimina-
tive EEG components are mostly derived from EEG responses to
two different conditions: visually comfortable (2D) stimuli, and
visually uncomfortable (3D) stimuli. Consequently, the ability to
assess VD quantitatively is needed. Developing a systematic plat-
form that can automatically reproduce discriminative EEG com-
ponents and interpret them in real time should be also taken into
account.

Therefore, our study involves applying EEG-based VD evaluation
technology to a wellness platform for ASVSs. There are three spe-
cific goals to our study: (G1) to elicit feature EEG components after
only a few seconds of viewing, without using external stimuli; (G2)
to show that specific EEG components reflect quantitative changes
in VD, rather than mere differences in EEG responses caused by any
conditional changes; and (G3) to develop a platform that auto-
matically extracts EEG components to generate viewer feedback
that reflects VD perception.

3. Viewing experiment

A new viewing experiment is proposed to achieve the above
goals. For G1, a single-trial test was conducted repeatedly. Specif-
ically, stimulus viewing and EEG recording were simultaneously
conducted for a period of 6 s during one stimulus projection. For G2,
test stimuli with differences only in terms of binocular disparity
were investigated in a strictly controlled experiment. For G3, a
subjective VD evaluation using a simple questionnaire followed
each stimulus projection. This helped not only to analyze EEG re-
sponses, but also to construct the ground-truth data used for the
machine learning process of our wellness platform.

3.1. Apparatus

Experiments were executed inside a darkroom equipped with a
passive 4700 3DTV (47LW6500, LG Electronics Inc.), and all recording
and command transmissions were executed by observers from
outside the darkroom while monitoring the subject through an IR
camera, as shown in Fig. 2. The darkroom helped to eliminate un-
expected changes to the viewing environment, and the IR camera
enabled the observers to react promptly to unforeseen behavior
such as epileptic seizures. The viewing distance was fixed at 2.5 m.
For EEG signal acquisition, a multi-channel system (WEEG-32,
Laxtha Inc., Daejeon, Korea) was used. EEG electrodes were
attached to subjects' scalps according to the international 10e20
system, where 18 channel locations (F3e6, Fz, C3e6, Cz, P3e6, Pz,
O1e2, and Oz) were used at a sampling rate of 512 Hz.



Fig. 2. System setup. A subject watches the test stimuli inside a darkroom equipped
with a passive 4700 3DTV and an IR camera. Observers control the proposed viewing
test and watch the subjects from outside the darkroom through the IR camera.

Fig. 4. Selection of test stimuli and human binocular vision characteristics according to
changes in binocular disparity.

Fig. 5. (a) Proposed test procedure and the stimulus presentation timing. (b) A
questionnaire with a visual discomfort chart for subjective evaluations of VD.
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3.2. Subjects

Nine healthy subjects all male and right-handedwith an average
age of 26.67 ± 3.08 years (indexed as S1, S2, …, S9) took part in the
proposed viewing test. We provided a detailed summary of the
experimental procedure to each subject in advance. The experi-
ment was approved by the Institutional Review Board at the
Gwangju Institute of Science and Technology.

3.3. Test stimuli and procedure

In order to evaluate VD induced by the VAC problem, we
generated five images of a random-dot stereogram (RDS) with the
same shape at varying depths: a circle with radius of 3:89+, as
shown in Fig. 3. The RDS merely provides the impression of depth
via disparity information, thus removing other factors to S3D
content that can affect VD perception. The test disparity levels
ranged from 2D to an outer binocular fusion limit: the minimum
disparity (RDS0), the maximum disparity (RDS4), and the inter-
mediate disparities (RDS1eRDS3) around the thresholds of Per-
cival's zone of comfort (Lambooij et al., 2009; Wopking, 1995) and
the zone of clear single binocular vision (Ukai and Kato, 2002;
Sheard, 1934), as shown in Fig. 4.

The test procedure is depicted in Fig. 5. Each trial consisted of a
stimulus period (SP) and a rest period (RP). During the SP, the
subject observed an RDS stimulus that was randomly selected from
among the five RDSs shown in Fig. 4, and the subject's EEG response
was simultaneously recorded. During the RP, the subject rated the
stimulus in terms of the discomfort experienced, as shown in Fig. 5
(b). The questionnaire was a simplified version of Hoffman et al.
Fig. 3. Test RDS stimulus: (left) a conceptual image constructed in a viewer's brain,
(right) a real RDS image in a S3D display.
(2008); Kim et al. (2014). Moreover, an inter-trial period (ITP) was
inserted between the RP and the SP. The duration of the ITP varied
from 0 s to 1 s to prevent subjects from guessing the next stimulus.

Notice that VD is a cumulative quantity depending on the pre-
sentation time (Li et al., 2008), and that a sequence effect occurs
whereby a projected stimulus is affected by the previously viewed
stimulus. Therefore, we divided the 150 trials (30 trials per
disparity degree) into five test sessions (TSs) to give the subjects a
short break (2 min) between TSs. Further, we randomly changed
the presentation sequence of the test stimuli with the same fre-
quency for each stimulus during a TS, and repeated the TSs with the
same test stimuli in a different sequence to negate the sequence
effect. Each TS lasted approximately 5 min, and the total experi-
ment lasted approximately 1.5 h including periods for the intro-
duction of the experiment, EEG setup, and all breaks.

4. EEG response analysis

The results of the subjective evaluation were analyzed first as
the reference. Spectral, spatial, and temporal EEG-features were
then analyzed with respect to their feasibility in S3D video systems.

4.1. Subjective VD evaluation

In Fig. 6, the top-left shows the overall average VD score at each
RDS level ranging from 1.167 (comfortable) to 4.774 (uncomfort-
able). RDS1, within the comfortable zone, was assigned a value of
2.563. RDS2, within the binocular fusion area, was assigned a value
of 3.486. RDS3, beyond the fusion limit, was assigned a value of
4.358. These results show that our experiment is consistent with



Fig. 6. Results of the subjective VD evaluation. Each subject (S1-S9) evaluated 150 trials of the five RDSs (30 trials for each RDS level). Note that the overall average VD increased
logarithmically with increases to the stimulus level (in terms of retinal disparity), and the subject-specific results vary slightly with respect to the dynamic range and the sensitivity
against the test stimuli.

Fig. 7. Overall average log spectra of EEG data for all subjects (S1eS9). The spectra are distinguished by color according to the RDS levels. There is significant spectral attenuation of
3D stimuli (RDS1e4) against the 2D stimulus (RDS0) in the alpha and beta frequency bands (8e30 Hz), and around the visual association cortex (Pz), the primary visual cortex (Oz),
and the sensorimotor cortex of the eyes (C3 and C4).
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the literature (Ukai and Kato, 2002; Lambooij et al., 2009; Sheard,
1934; Wopking, 1995), and the excessive disparity in S3D content
clearly results in significant VD with S3D displays. In addition, the
subject-specific graphs prove that VD can vary depending on in-
dividual factors such as stereo acuity, despite the same S3D content
and viewing environment.

4.2. Oscillatory EEG response

Fig. 7 shows the overall average log spectra of the EEG data
across all subjects. It shows that significant spectral attenuation
occurred against the 3D stimuli (RDS1e4), compared to the 2D
stimulus (RDS0) in the alpha (8e14 Hz) and beta (15e30 Hz) EEG
bands. The attenuation was mainly elicited around the visual as-
sociation cortex (Pz, p ¼ 0.015 in alpha and p ¼ 0.129 in beta), the
primary visual cortex (Oz, p¼ 0.024 in alpha and p¼ 0.307 in beta),
and the sensorimotor cortex of the eyes (C3 and C4, p ¼ 0.033 in
alpha and p ¼ 0.467 in beta). A Student's t-test (P < 0.05) was
performed to clarify the distinctiveness of the alpha and beta EEG
bands. The P-values confirm that the alpha band is significantly
distinct compared to the other bands. In addition, these results
show that the degree of spectral attenuation increases roughly in
proportion to the RDS level.

4.3. Spatial EEG response

Fig. 8 shows the overall average topographies of r2 values across
all subjects. The r2 is a statistical measurement of the extent to
which the means of the two distributions differ in relation to their
variances (Blankertz et al., 2008; Schalk et al., 2004). We used this
measurement to show discrimination in the spatial domain (the
EEG electrode channel), where the band-passed spectrum
(8e30 Hz) differences between two stimulus distributions (RDS0
vs. one of RDS1-4) were used to condense features from the above
analysis in the frequency domain. These topographies confirm that
the Pz channel (the visual association cortex) is the most discrim-
inative among all EEG channels. The visual association cortex is
linked with the unnatural processing of 3D information, as
Fig. 8. Overall average topographies of r2 values, showing how strongly the means of
two stimulus distributions (RDS0 vs. one of RDS1-4) differ in relation to their variances.

Fig. 9. Overall average correlations between envelopes of the band-passed (8e30 Hz) signals
of brain oscillations. Note that sufficient correlations are maintained during the SS at the Pz c
subject views S3D video, except in the interval (0e1 s).
discussed in Hoffman et al. (2008); Lambooij et al. (2009);Wopking
(1995).

4.4. Temporal EEG response

Fig. 9 shows the overall average correlations between envelopes
of the band-passed spectrum and stimulus levels (RDS1e4). The
correlations were computed using the algorithm proposed by
Blankertz et al. (2008), where the greatest value in channel-by-time
matrices reveals the channel and the time that are the most
correlated with each RDS label. Thus, these results further clarify
the temporal behavior of the target EEG components (8e30 Hz at
Pz channel). Moreover, they confirm that the target EEG compo-
nents maintain sufficient correlations during the SS (6 s), except
during the first second after the onset of the stimulus. This indicates
that the target EEG components are a sustainable response to VD.
Thus, real-time VD evaluations can be made by capturing EEG re-
sponses at any point during continuous S3D video viewing.

5. Detecting VD

In this section, a framework for determining whether a subject
is currently feeling severe VD is described, with the ultimate aim of
achieving G3. The proposed framework was developed on the basis
of the conventional BCI technology (Schalk et al., 2004). It was
optimized based on the experimental results and EEG analysis
described in the above sections. The entire process is depicted in
Fig. 10.

5.1. Overall framework

To construct training data, we divided the EEG response ac-
quired in Section 4, into a set of visual comfort (VC) responses and a
set of VD responses based on the subjective VD evaluation. We
assumed that the VD set has values greater than 2 (OK) according to
the definition of the five-scale VD chart. Then, we applied ten-fold
cross validation to avoid overfitting and bias. We used 70% of each
set as training data and 30% as testing data without the subjective-
evaluation-based labels. A support vector machine (SVM) (Cortes
and Vapnik, 2008) was trained to distinguish the two EEG
response sets (VC/VD)with discriminative EEG feature vectors from
the training data. During the testing phase, the EEG feature vectors
were examined by the trained classifier to determine whether
stimuli would induce VD. Because severe spatial and spectral data
variations are common in raw EEG signal processing, subject-
specific optimization should be conducted before extracting the
EEG feature vectors. To this end, the raw EEG signals were roughly
band-pass filtered and down-sampled during both training and
and the stimulus levels (RDS1e4). These matrices depict the spatio-temporal behavior
hannel. This implies that the target EEG components can be acquired continually as the



Fig. 10. Proposed method for detecting single-trial-based VD. For the training data, raw EEG responses are divided into a VC group and a VD group based on the subjective
evaluation. After ten-fold cross validation, a classifier that distinguishes the two groups is trained using a support vector machine (SVM) (Cortes and Vapnik, 2008). Unknown EEG
responses are then examined using the classifier. The common spatio-spectral pattern (CSSP) was analyzed (Lemm et al., 2008) to optimize unstable EEG signals in each subject
during both training and testing phases.
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testing. Then, the vectors were finely optimized with common
spatio-spectral pattern (CSSP) analysis (Lemm et al., 2008) during
the training phase. This CSSP filter was then reused during the
testing phase.
5.2. Variable EEG signal optimization

In Section 4, we reported that the discriminative EEG compo-
nents corresponding to VD were observed in a- and b-bands
(8e30 Hz) in the visual cortex (Pz channel). In practice, however, it
is difficult to specify the most representative frequency in candi-
date bands because the optimal bands vary slightly among subjects.
In addition, the most discriminative spatial position also varied
because the attached electrodes were not attached in exactly the
same place for all subjects.

Thus, a variety of BCI frameworks generally use subject-adaptive
filters and statistical optimization techniques. One of the most
popular spatial filters is the common spatial pattern (CSP) algo-
rithm (Ramoser et al., 2000). It extracts the most discriminative
EEG channel by maximizing a variance ratio between two different
classes. Suppose Xk ¼ ðXk

c;tÞ; c ¼ 1;…;C and t ¼ t0;…; T are band-
passed EEG potentials for the kth trial, where c and t are indices
for the EEG electrodes and instants of time, respectively. The goal of
the CSP algorithm is to obtain a spatial filter matrixW that projects
the original signal Xk into each of the discriminative spatial bases. It
is computed by maximizing the objective function in 1, where Yk is
the class label (comfortable or uncomfortable) for the kth trial.

W ¼ argmax
W

���WXk
fk:Yk¼þ1g

���2���WXk
fk:Yk¼�1g

���2
(1)

Although the CSP algorithm can handle the spatial variation in
EEG signals, the spectral variation remains troublesome. As an
alternative, the CSSP algorithm (Lemm et al., 2008) can be
considered. It simultaneously handles both spatial and spectral
variations by concatenating the time-delayed version of the orig-
inal signals. Therefore, we adopted the CSSP algorithm in the pro-
posed framework because the target EEG components are mostly
observed in the spatio-spectral domain, and because the target EEG
components suffer from the same spatial and spectral variation
problems. However, the initial frequency bands for the CSSP algo-
rithm are subject to error, and finding the optimal spectral basis is
computationally expensive. To this end, we added two processes to
the CSSP algorithm. First, band-pass filtering was used to extract
the candidate frequency bands, 8e30 Hz, as input frequency bands.
Second, down-sampling was performed to reduce the complexity
required in finding the optimal spectral basis.

5.3. Feature vector extraction and training

From the CSSP algorithm, we acquire a projection matrix W,
with which the optimal spatio-spatial filter cW is constructed by
selecting the m most discriminative bases of W for the class
Yk ¼ þ1 and the class Yk ¼ �1. Then, cW projects the original EEG
signal Xk into the 2m spatio-spectral bases, and the projected
sample is represented by a 2m-dimensional projected vector,
Zk ¼ ðZki;tÞ; i ¼ 1;…;2m, as follows:

Zk ¼ cWXk (2)

Although the projected vector Zk retains the optimal channel
and frequency band information, it cannot be used directly as a
feature vector for the following reasons. First, the recorded EEG
potentials varied slightly during a 6 s SS, as shown in Fig. 9.
Therefore, converting the time-varying potentials into a single
representative value remains a problem. Second, absolute values
for these potentials differ for each person and each trial. Therefore,
they must be normalized in advance. For these reasons, the con-
ventional feature-extraction method in BCIdviz., log-transformed
signal variancedwas adopted to convert Zk into a tonic feature
vector Fk as in 3, where variances are computed for each filtered
channels, i ¼ 1;…;2m.

f ki ¼ log
�
var

�
Zki

��
(3)

5.4. Testing detected VD

For the simulation, we initially selected a wider frequency band
(8e40 Hz) than the observed feature frequency bands (8e30 Hz)
during band-pass filtering in order to consider possible spectral
variations to the raw EEG signals. To down-sample the data, we
sub-sampled the original EEG signals every four time-stamps
(approximately 8 ms), The EEG signals between 0 and 1 s were
skipped in order to strengthen the temporal characteristics. For
spatio-spectral filtering, a time-delay parameter t was selected
empirically to tune the initial frequency band. During feature
extraction, we set m ¼ 3 to use six-dimensional feature vectors for
training and testing the classifier.
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Previous works merely distinguish 2D EEG responses from S3D
responses (Chen et al., 2013; Li et al., 2008; Cho et al., 2012). By
contrast, the proposed method classifies two EEG responses ac-
cording regarding VD, making it more valuable but also a chal-
lenging to extend in future research (Frey et al., 2014; Zou et al.,
2015). From this perspective, we detected a set of responses to
significant VDdi.e., responses with a subjective evaluation score
between 3 and 5dunder two different input conditions: with and
without the EEG response to the 2D stimulus.

The results are shown in Fig. 11. These results confirm that the
proposed framework is considerably accuratedapproximately 80%
on averagedunder both conditions. This implies that viewer
feedback regarding VD can be provided with high degree of accu-
racy in ASVSs. Moreover, these results show that VC/VD feedback is
elicited by the difference in the magnitude of VD among S3D
stimuli. The results for Subjects S3 and S6 are absent under the
condition without 2D stimulus. This is because there was an
insufficient amount of training data for the VC class, as shown in
Fig. 6, where most scores were biased into the VD class.

6. Discussion

6.1. Subject-specific analysis

As shown in Fig. 6, VD significantly varied between subjects,
despite the same test stimuli and viewing environment. This shows
the influence of personal factors such as binocular fusion limits and
stereo acuity in VD perception. It also suggests that a viewer-
interactive approach is needed. In this section, we provide a
subject-specific analysis of our results to show how our approach
reflects such personal factors.

Unfortunately, we did not previously analyze the subjects'
binocular vision characteristics. However, the slopes and the dy-
namic ranges of each graph in Fig. 6 help to infer the viewers'
binocular fusion limits and stereo acuity. For instance, the data for
Fig. 11. Accuracy of detected VD. We assumed that an EEG response with a subjective-evalu
without an EEG response to 2D stimulus) were compared.

Fig. 12. Subject-specific log spectra at the Pz channel. These graphs reveal the differences in
subjects (S4, S1, and S3). The colors distinguish EEG responses according to the testing RDS le
fusion limit (solid lines) or beyond it (dotted lines).
Subject S4 has the gentlest slope with the smallest dynamic range,
and S4's evaluation score (4.067) for RDS4 (3:39+) was much lower
than the overall average (4.358) for RDS3 (2:53+), which belongs in
the outer fusion area. This implies that S4 has the widest fusion
limit among all subjects, and likely perceives all RDS images with
clear binocular vision. By contrast, the graph for Subject S3 has the
steepest slope with the maximum dynamic range (from 1 to 5).
Indeed, S3 provided an evaluation score of 5 for RDS3. The evalu-
ation of RDS2 (4.433) was also higher than the overall average for
RDS3. These results imply that S3 has the shortest fusion limit, and
that RDS2 was likely perceived as a double or blurred image that
exceeded S3's binocular fusion limit. The graph for S1 has an in-
termediate slope with an evaluation score of 4.625 for RDS3, which
is higher than the overall average for RDS3. This implies that S1 has
an intermediate fusion limit, and that RDS3 might exceed S1's
binocular fusion limit and appear as a double or blurred image.

From the above inferences, Fig. 12 compares the log spectra of
the three representative subjects (S4, S1, and S3). The results
confirm that the degree of spectral attenuation consistently
increased according to the relevant RDS level increase when these
levels are supposed to bewithin the subject's binocular fusion limit.
When RDS levels exceeded a viewer's binocular fusion limit, the
degrees of the corresponding spectra oscillated (rather than
attenuated) according to increase in the RDS level. For instance, S4
was judged to have clear single binocular vision across all RDS
levels. Indeed, the degrees of spectral attenuation perfectly
increased according to the RDS level increase. Likewise, S1 was
judged to have clear single binocular vision for RDS0, RDS1 and
RDS2. Accordingly, attenuation among the log spectra (black, blue,
and green solid lines) corresponding to these RDS images was
strongly associated with increased RDS levels. Finally, only RDS1
was judged to fall within S3's binocular fusion limit. Thus, strong
spectral attenuation was exclusively observed between RDS0 and
RDS1 (the black and blue solid lines), and the other spectra oscil-
lated at around the spectrum for RDS1's EEG response.
ation score between 3 and 5 represents significant VD, and two conditions (with and

EEG responses according to the binocular vision characteristics of three representative
vels, and the line types show whether a testing RDS level is within a subject's binocular
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6.2. Active brain areas

According to literature surveys in neuroscience (Roe et al., 2007;
Tyler and Kontsevich,1995; Parker, 2007), visual information is first
processed at the occipital lobe, and then follows the dorsal stream
or the ventral stream depending on its purpose as shown in Fig. 13.
The dorsal stream terminates in the parietal lobe, and processes
information about where the object is located, while the ventral
stream terminates in the temporal lobe and processes information
about what the object is. On the basis of the above fundamentals,
the distinct EEG component observed in our experiment (response
around the PZ channel) looks reasonable, and must be captured as
the most strengthened feature by mechanisms of stereoscopic
processing lined with the dorsal stream. This is because the only
variable in our stimuli is binocular disparity that only constructs
where information, and the PZ channel is located on the way of the
dorsal stream. Therefore, the degree of VD perception could be also
explained by theworkload of neurons in the dorsal stream to clarify
the location information.

The above inference is also reliable when compared to many
fMRI-based studies (Backus et al., 2001; Georgieva et al., 2009;
Durand et al., 2009; Tsao et al., 2003). In their experiments, S3D
stimuli containing only disparity variant were viewed, and distinct
responses were observed at the intraparietal sulcus (IPS) regions.
As a result, it was revealed that the processing of 3D information by
disparity is certainly involved in the IPS regions. In addition, Jung
et al. (2015) recently reported an in-depth fMRI analysis that re-
veals the brain activity linked to the perception of the VD when
natural S3D videos are viewed. They found that IPS regions are
certainly involved in the processing of excessive binocular dispar-
ities, and additionally captured distinct response at eye-
movement-related regions (the frontal eye fields (FEF), premotor
cortex and IPS). Their observation substantiates that the VAC
problem is the basic cause of the VD sensation (Hoffman et al.,
2008; Kim et al., 2014; Vienne et al., 2014) in the manner of
neuropsychology, and indirectly proves that the abnormal eye-
movement was elicited in the VAC condition as reported in Ukai
and Kato (2002), where a commercial video refractor was used
for capturing the abnormality.
6.3. Remaining challenges

The proposed wellness platform is currently limited to dis-
tinguishing between two levels of VD sensation. To expand its
range, we here present two more major challenges: evaluating
quantitative degrees of VD, and studying other relevant factors that
contribute to VD.

To quantify VD precisely, the binocular vision characteristics of
each viewer should be investigated in advance. Based on this
investigation, the levels of S3D stimuli for each viewer need to be
Fig. 13. Two-streams hypothesis of the neural processing of human vision (OpenStax
College, 2013). First, visual information is processed at the occipital lobe, and then
flows to the dorsal or ventral stream depending on its purpose.
calibrated. Then, the customized test stimuli will elicit more
meaningful EEG responses as training data to identify the repre-
sentative features for VD detection. In addition, the training phase
should also be extended to a multi-class-based framework in order
to train classifiers to quantify VD.

We assumed that the VAC problem is themost critical factor that
causes VD. However, actual S3D content is much more complex,
with various contributing factors such as a change in the rate of
disparity, left and right asymmetry, disparity inversion, etc. These
factors are summarized in Table 2. Because these factors contribute
to VD, future research is needed to the find discriminative EEG
components that correspond to each factor. These should then be
combined as a single feature vector. In addition, the following also
should be taken into consideration:

� Personal factors: stereopsis disability (strabismus, anisome-
tropia), ametropia, accommodation/convergence amplitude,
etc.

� Viewing environment: viewing distance, posture/position,
lighting, etc.

� Display factors: display type (active/passive), size, crosstalk,
shear distortion, 3D glasses, etc.
6.4. Applications in various S3D industries

The proposed wellness platform can be used as a safety measure
for both public and personal displays. In public displays, it can
provide alarms to indicate the viewers' states. That way, viewers
can take the appropriate action before suffering significant VD. In
personal displays, a system such as an ASVS can more directly
reconstruct the input S3D content according to the viewer's VD
feedback. In addition, the proposal can inform safety guidelines for
producing S3D content. For instance, a depth chart is essential for
safe yet dramatic 3D scenes within a limited depth budget when
S3D content is produced. However, the manual creation of such
content by a stereographer is time-consuming and dependent on
experience. Thus, our platform can help to generate an ideal depth
chart more efficiently, by reducing themanual workload. Moreover,
hardware manufacturers can utilize the proposed wellness plat-
form to inspect the quality of experience of S3D displays and
glasses objectively.

7. Conclusion

In this paper, we developed the first wellness platform that
exploits EEG to facilitate comfortable S3D video viewing in ASVSs.
EEG-based VD evaluations were made by recording raw EEG data
repeatedly under natural viewing conditions without any external
Table 2
Well-known stereoscopic 3D content factors that cause VD.

Factors Details

Disparity Excessive use of absolute disparity
Excessive use of relative disparity

Disparity's temporal/spatial change Object motion (local motion)
Camera motion (global motion)

Stereoscopic image asymmetry Geometry asymmetry
Luminance/chrominance asymmetry
Object structure asymmetry
Window edge violation

Unnatural scene representation Cardboard effect
Depth plane curvature
Puppet theater effect

Binocular/monocular depth cue conflict Disparity inversion
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test paradigm such as an ERP and VECP. Nevertheless, we could
elicit discriminative EEG components that reflect the perception of
VD owing to various EEG signal analysis techniques for extracting
spatio-temporal frequency characteristics. On the basis our feature
EEG components, we then developed a classifier that could auto-
matically detects severe perception of VD by using a machine-
learning-based BCI technology. Although the proposed approach
still faces many technical challenges, we believe that it sets the
initial grounds for utilizing EEG-based VD evaluation techniques
toward various ergonomic S3D applications.
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