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Abstract—Our work concentrates on detecting tiny animals in 

huge air-view images with competitive accuracy and speed. Many 

environmental organizations investigate distribution of specific 

species of animals by capturing images from the sky. It is very 

challenging work for human to check the huge images and mark 

animals by hand. To check it automatically, we propose the 

method using CNN-based sliding window. There are popular 

works like Faster R-CNN or SSD that detect multiple objects in 

image. Despite their state-of-the-art performance, they are not 

applicable in this situation. Air-view image is huge and animals 

are tiny as not easy for human to detect. Normal multiple object 

detection methods are not suitable to detect tiny objects, which 

are smaller than minimum size threshold. Also, dataset is not 

suitable to train their networks. The ground-truth dataset 

doesn’t contain scale information. In this paper, we introduce our 

own method, from training network using dotted ground truth 

dataset to detection and classification. Also, we verify the 

competitive performance of our multi-viewpoint based detection 

comparing with single viewpoint detection. 
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I.  INTRODUCTION  

Image category classification is the conventional research 
topic in computer vision area. With the increasing popularity of 
the deep learning research, classification has been highly 
developed recently. State-of-the-art methods are mostly based 
on CNN(convolutional neural network). Popular CNN 
structures like VGG [1], GoogleNet [2], ResNet [3] have been 
proposed in ImageNet challenge. They are originally developed 
for classification work and have shown competitive 
performance. Because of its simplicity, VGG structure is 
frequently applied or embedded in other works as a feature 
extractor. We also adapted VGG-16 network in our method. 
Development of image classification inspired related works. 
Multiple object detection, combined with region proposal is 
one of them. Region proposal is necessary process in detection 
because of its ability of reducing size of problem domain. 
Without region proposal, we need to search whole image pixels 
with various size of windows. It takes huge time especially 
when processing big image. Many works have tried to combine 
region proposal with CNN based classifier [4] [5] [6]. 
Although, those works have shown competitive results in 
several benchmarks, like PASCAL VOC or ImageNet, they  
could be applied in specific domain. What if the training  

 
Fig. 1. Dotted ground truth image example. Each color of dots indicates 

specific age or sex of sea lion(red : adult male, magenta : subadult male, 

brown : female, dark blue : juvenile). 

 

Fig. 2. Dataset doesn’t provide bounding box information for each sea lion. 

Scale, proportion and orientation are all different for each sea lion and even 
many of them are overlapped. So, it’s impossible to train and use popular 

networks like Faster-RCNN or SSD. 

 

dataset consists of dotted images without any size information 
(See Figure 1 and Figure 2). Also, we need different approach 
since objects are ambiguous and too small to detect. To solve 
this problem, we propose the CNN-based sliding window 
method. The sliding window traverse the image and detect tiny 
sea lions. Our framework considered the speed and 
performance simultaneously. The detail is available in section 2 
and 3. In my best knowledge, this is the first work that focus on 
detecting and classifying tiny animals in huge air-view image. 

II. PROPOSED METHOD 

Brief framework is introduced in Figure 3. Our framework 
is based on sliding window. The sliding window traverse the  



 
Fig. 3. Brief framework of our work. In each sky blue colored box area, 

green box traverses and collects patches as a batch. Using batch as an input of 

detector is much faster than one by one. 

 
Fig. 4. Proposed network structure. Original patch size is 64x64 and is 
cropped and resized to 16x16. Because of same size of three inputs it can be 

processed in parallel and provide more information to dectector than only 

using one input. 

 

image with 50% overlap and extract patches. Extracted patches 
are checked by CNN based detector and classifier. The 
classifier discriminates sex and age of sea lions(See the colored 
dots in Figure 1). 

A. Detection and classification network 

Our detection network considers speed and accuracy. As 
you can see in the Figure 4, original input patch(64x64) is 
cropped and resized into 3 images, which have different point 
of view. But these 3 images have same size 16x16. Top image 
has low resolution but wide sight. It contains rough and wide 
information. Bottom image has high resolution but very limited 
sight. It contains detailed and narrow information. We tried to 
apply the 3-level coarse-to-fine structure in our network. And 
because of their same size(16x16), 3 images are processed 
completely parallel without any bottle-neck. Finally, 3 types of 
features are concatenated and processed in remaining layers. 
The final output of detector network is an array, which consists 
of probability of sea lion and background. Patches, which have 
the sea lion probability over 0.5 are accepted as sea-lion. 
Detailed depiction of our network is drawn in Figure 5. 
Classification is similar to VGG-16 network. It was just 
downsized to fit to our patch size. The only patches, which 
contain sea lion, enter into classifier network. It reduces the 
time consumption by processing patches selectively. 

B.  Multi-level sliding window 

Applying sliding window on whole image is quite slow. 

Especially, when each patch is processed by heavy CNN- 

based network, it takes enormous time. To reduce the time  

 
Fig. 5. Detector network. Magenta colored cube means max-pooling. 

 

Fig. 6. Re-training framework. Apply initially trained detector and classifier 
on training images(0-749). And collect false-true samples which are further 

than 16-pixel from all ground-truth locations. We re-train our detector 

combining false-true samples and original samples. 

 

consumption, we implemented multi-level sliding window. 

First, we divided the whole image into 64 sections. Then, took 

each section sequentially(Step 1 in Figure 3). The 64x64 

sliding window traverse in the selected section and collect all 

patches(Step 2 in Figure 3). These collected patches become 

batch and enter the detector. So, the output is not just one 

array, but arrays, number of which is same as the number of 

patches in batch. This method reduces the processing time per 

image from hours to a few seconds. 

C. Re-train network with false-true samples 

In Table 1, you can find the results of proposed method. It 

shows the great result when trained only 10 hours but it 

declines severely when trained 10 more hours. The reason is 

that the detector detects sea lions very well. You can see a sea 

lion with multiple brown spots in Figure 6. The detector 

regarded many parts of sea lion as independent sea lions. We 

have to re-train the network to think many edge parts of sea 

lion as background. So, we have to collect false-true samples 

from training images. The re-training framework is depicted in 

Figure 6 with explanation. 

III. EXPERIMENT 

A. Dataset and training 

The dataset is NOAA sea lion dataset which was provided 
in KAGGLE sea lion counting competition [8]. Dataset 
consists of 948 air-view images(sizes of which are 
approximately 5600 x 3700) with pair of dotted and non-dotted. 
We separate the dataset into training (0-749) and test (750-947). 
Our network consists of CNN layers and fully connected layers. 
Each CNN layer has rectified linear unit for activation and 
2x2max pooling layer for compression. For better performance, 
we embedded batch normalization before each rectified linear  



TABLE I.  COMPARISON 

METHOD M.RMSE TIME 

64x64 single image(10h training) 19.47 18.98 

64x64 single image(20h training) 19.98 19.53 

16x16 single image(10h training) 27.37 5.32 

16x16 single image(20h training) 25.56 6.02 

Proposed(10h training) 19.02 10.58 

Proposed(20h training) 27.04 11.09 

Proposed(10h additional training with 

false-true samples) 
20.03 10.68 

 

unit. After CNN layers, it follows fully connected layers with 
0.5 drop-out probability. The final output is produced after 
softmax function. When training, output is evaluated by 
softmax cross-entropy function and optimized by adam-
optimizer [7]. We set the adam learning rate as 1e-3. Before 
training, we extracted sea lion samples from dotted images. We 
applied blob detection to get position of each sea lion. Using 
this center position of each sea lion, sea lion samples are 
cropped with 80x80 size. We randomly sampled background 
patches for negative samples. Also patches near sea lions are 
sampled for hard-negative samples. We applied data 
augmentation in training. We used up-down flip and left-right 
flip with 50% probability. And modified brightness and 
contrast. Especially, when training classifier, we randomly 
cropped 64x64 size patches from 80x80 size initial samples. It 
improves the accuracy when detected position is not exactly 
located in center of sea lion. But for training detector, we 
cropped 64x64 initial training patch centered at 80x80 patch. 
This is for accurate detection of center of sea lion. One-hot 
vectors are used for loss-function of detector and 
classifier(length-2 for detector, length-4 for classifier). 

B. Performance comparison 

In this section we compare the accuracy and time-
consumption in various aspects. We evaluated our method’s 
performance in test dataset(750-947) by calculating M.RMSE 
and average time per image. M.RMSE is derived by following 
equation. 
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c  is class number(1-4) and i  is image number(750-947). N  

is total number of class or image. c

in  is predicted number of 

class c  objects in image i . We compared ours to single patch 

based networks to prove the power of multi-viewpoints. For 
fair comparison, each method was trained equally 10-hours and 
20-hours. First, we analyze the effect of training time. As we 
mentioned in section 3-C, result of our method severely got 
worsen through 10 more hours of training. 64x64 single patch 
method and 16x16 single patch method shows relatively 
consistent results regardless of training time. After re-training 
with false-true samples about 10 hours, our method showed  

 
Fig. 7. Odd rows are ground truth and even rows are visualized results of 

proposed method. In the first result image, our method successfully detected 

two adult male sealions in confusing rocky background texture. And second 
and third result images also verify great accuracy of our method in complex 

scene compared to ground truth. 

 



competitive result again. From now, the result of our method 
indicates the result after re-training. We compared ours with 
64x64 single sliding window method. Although, it uses only 
one image patch as input, it has much higher resolution and 
context. Our proposed method used three 16x16 patches, which 
is 1/16 size of 64x64 patch. But as you can see in Table 1, our 
method showed competitive RMSE score to single 64x64 patch 
based method. And the time is almost twice faster. 16x16 
single sliding window method is slightly faster than our 
method. But our accuracy outperforms it. Relatively lower 
speed is because of sequential cropping and resizing process. 
Parallel processing could accelerate the speed of our method. 
You can see the visualized detection and classification results 
of our method in Figure 7. 

IV. CONCLUSION 

In this paper, we introduced the framework to detect small 

animals in air-view image. There are three main contributions. 

First, inputs with different viewpoint and resolution improved 

speed without speed bottleneck. Second, fully utilized the 

ability of GPU by collecting patches as input batch. It 

significantly reduced processing time. And third, we devised 

own re-training method using training dataset by collecting 

false-true error patches. Our framework could be applied to 

other works, which require detecting and classifying small 

objects(e.g. face detection and age classification among many 

audiences). Our future work is implementing CNN structure 

that could consider wide context instead of small patches. 
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