
Animal Detection in Huge Air-view Images using

CNN-based Sliding Window

Young-Chul Yoon

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

Gwangju, South Korea

zerometal9268@gist.ac.kr

Kuk-Jin Yoon

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

Gwangju, South Korea

kjyoon@gist.ac.kr

Abstract—Our work concentrates on detecting tiny animals in

huge air-view images with competitive accuracy and speed. Many

environmental organizations investigate distribution of specific

species of animals by capturing images from the sky. It is very

challenging work for human to check the huge images and mark

animals by hand. To check it automatically, we propose the

method using CNN-based sliding window. There are popular

works like Faster R-CNN or SSD that detect multiple objects in

image. Despite their state-of-the-art performance, they are not

applicable in this situation. Air-view image is huge and animals

are tiny as not easy for human to detect. Normal multiple object

detection methods are not suitable to detect tiny objects, which

are smaller than minimum size threshold. Also, dataset is not

suitable to train their networks. The ground-truth dataset

doesn’t contain scale information. In this paper, we introduce our

own method, from training network using dotted ground truth

dataset to detection and classification. Also, we verify the

competitive performance of our multi-viewpoint based detection

comparing with single viewpoint detection.

Keywords—object detection; object classification; deep learning

I. INTRODUCTION

Image category classification is the conventional research
topic in computer vision area. With the increasing popularity of
the deep learning research, classification has been highly
developed recently. State-of-the-art methods are mostly based
on CNN(convolutional neural network). Popular CNN
structures like VGG [1], GoogleNet [2], ResNet [3] have been
proposed in ImageNet challenge. They are originally developed
for classification work and have shown competitive
performance. Because of its simplicity, VGG structure is
frequently applied or embedded in other works as a feature
extractor. We also adapted VGG-16 network in our method.
Development of image classification inspired related works.
Multiple object detection, combined with region proposal is
one of them. Region proposal is necessary process in detection
because of its ability of reducing size of problem domain.
Without region proposal, we need to search whole image pixels
with various size of windows. It takes huge time especially
when processing big image. Many works have tried to combine
region proposal with CNN based classifier [4] [5] [6].
Although, those works have shown competitive results in
several benchmarks, like PASCAL VOC or ImageNet, they
could be applied in specific domain. What if the training

Fig. 1. Dotted ground truth image example. Each color of dots indicates

specific age or sex of sea lion(red : adult male, magenta : subadult male,

brown : female, dark blue : juvenile).

Fig. 2. Dataset doesn’t provide bounding box information for each sea lion.

Scale, proportion and orientation are all different for each sea lion and even
many of them are overlapped. So, it’s impossible to train and use popular

networks like Faster-RCNN or SSD.

dataset consists of dotted images without any size information
(See Figure 1 and Figure 2). Also, we need different approach
since objects are ambiguous and too small to detect. To solve
this problem, we propose the CNN-based sliding window
method. The sliding window traverse the image and detect tiny
sea lions. Our framework considered the speed and
performance simultaneously. The detail is available in section 2
and 3. In my best knowledge, this is the first work that focus on
detecting and classifying tiny animals in huge air-view image.

II. PROPOSED METHOD

Brief framework is introduced in Figure 3. Our framework
is based on sliding window. The sliding window traverse the

Fig. 3. Brief framework of our work. In each sky blue colored box area,

green box traverses and collects patches as a batch. Using batch as an input of

detector is much faster than one by one.

Fig. 4. Proposed network structure. Original patch size is 64x64 and is
cropped and resized to 16x16. Because of same size of three inputs it can be

processed in parallel and provide more information to dectector than only

using one input.

image with 50% overlap and extract patches. Extracted patches
are checked by CNN based detector and classifier. The
classifier discriminates sex and age of sea lions(See the colored
dots in Figure 1).

A. Detection and classification network

Our detection network considers speed and accuracy. As
you can see in the Figure 4, original input patch(64x64) is
cropped and resized into 3 images, which have different point
of view. But these 3 images have same size 16x16. Top image
has low resolution but wide sight. It contains rough and wide
information. Bottom image has high resolution but very limited
sight. It contains detailed and narrow information. We tried to
apply the 3-level coarse-to-fine structure in our network. And
because of their same size(16x16), 3 images are processed
completely parallel without any bottle-neck. Finally, 3 types of
features are concatenated and processed in remaining layers.
The final output of detector network is an array, which consists
of probability of sea lion and background. Patches, which have
the sea lion probability over 0.5 are accepted as sea-lion.
Detailed depiction of our network is drawn in Figure 5.
Classification is similar to VGG-16 network. It was just
downsized to fit to our patch size. The only patches, which
contain sea lion, enter into classifier network. It reduces the
time consumption by processing patches selectively.

B. Multi-level sliding window

Applying sliding window on whole image is quite slow.

Especially, when each patch is processed by heavy CNN-

based network, it takes enormous time. To reduce the time

Fig. 5. Detector network. Magenta colored cube means max-pooling.

Fig. 6. Re-training framework. Apply initially trained detector and classifier
on training images(0-749). And collect false-true samples which are further

than 16-pixel from all ground-truth locations. We re-train our detector

combining false-true samples and original samples.

consumption, we implemented multi-level sliding window.

First, we divided the whole image into 64 sections. Then, took

each section sequentially(Step 1 in Figure 3). The 64x64

sliding window traverse in the selected section and collect all

patches(Step 2 in Figure 3). These collected patches become

batch and enter the detector. So, the output is not just one

array, but arrays, number of which is same as the number of

patches in batch. This method reduces the processing time per

image from hours to a few seconds.

C. Re-train network with false-true samples

In Table 1, you can find the results of proposed method. It

shows the great result when trained only 10 hours but it

declines severely when trained 10 more hours. The reason is

that the detector detects sea lions very well. You can see a sea

lion with multiple brown spots in Figure 6. The detector

regarded many parts of sea lion as independent sea lions. We

have to re-train the network to think many edge parts of sea

lion as background. So, we have to collect false-true samples

from training images. The re-training framework is depicted in

Figure 6 with explanation.

III. EXPERIMENT

A. Dataset and training

The dataset is NOAA sea lion dataset which was provided
in KAGGLE sea lion counting competition [8]. Dataset
consists of 948 air-view images(sizes of which are
approximately 5600 x 3700) with pair of dotted and non-dotted.
We separate the dataset into training (0-749) and test (750-947).
Our network consists of CNN layers and fully connected layers.
Each CNN layer has rectified linear unit for activation and
2x2max pooling layer for compression. For better performance,
we embedded batch normalization before each rectified linear

TABLE I. COMPARISON

METHOD M.RMSE TIME

64x64 single image(10h training) 19.47 18.98

64x64 single image(20h training) 19.98 19.53

16x16 single image(10h training) 27.37 5.32

16x16 single image(20h training) 25.56 6.02

Proposed(10h training) 19.02 10.58

Proposed(20h training) 27.04 11.09

Proposed(10h additional training with

false-true samples)
20.03 10.68

unit. After CNN layers, it follows fully connected layers with
0.5 drop-out probability. The final output is produced after
softmax function. When training, output is evaluated by
softmax cross-entropy function and optimized by adam-
optimizer [7]. We set the adam learning rate as 1e-3. Before
training, we extracted sea lion samples from dotted images. We
applied blob detection to get position of each sea lion. Using
this center position of each sea lion, sea lion samples are
cropped with 80x80 size. We randomly sampled background
patches for negative samples. Also patches near sea lions are
sampled for hard-negative samples. We applied data
augmentation in training. We used up-down flip and left-right
flip with 50% probability. And modified brightness and
contrast. Especially, when training classifier, we randomly
cropped 64x64 size patches from 80x80 size initial samples. It
improves the accuracy when detected position is not exactly
located in center of sea lion. But for training detector, we
cropped 64x64 initial training patch centered at 80x80 patch.
This is for accurate detection of center of sea lion. One-hot
vectors are used for loss-function of detector and
classifier(length-2 for detector, length-4 for classifier).

B. Performance comparison

In this section we compare the accuracy and time-
consumption in various aspects. We evaluated our method’s
performance in test dataset(750-947) by calculating M.RMSE
and average time per image. M.RMSE is derived by following
equation.

2()

.

c c

i i i

c i
i

c i

n n RMSE

RMSE M RMSE
N N



 
 

c is class number(1-4) and i is image number(750-947). N

is total number of class or image. c

in is predicted number of

class c objects in image i . We compared ours to single patch

based networks to prove the power of multi-viewpoints. For
fair comparison, each method was trained equally 10-hours and
20-hours. First, we analyze the effect of training time. As we
mentioned in section 3-C, result of our method severely got
worsen through 10 more hours of training. 64x64 single patch
method and 16x16 single patch method shows relatively
consistent results regardless of training time. After re-training
with false-true samples about 10 hours, our method showed

Fig. 7. Odd rows are ground truth and even rows are visualized results of

proposed method. In the first result image, our method successfully detected

two adult male sealions in confusing rocky background texture. And second
and third result images also verify great accuracy of our method in complex

scene compared to ground truth.

competitive result again. From now, the result of our method
indicates the result after re-training. We compared ours with
64x64 single sliding window method. Although, it uses only
one image patch as input, it has much higher resolution and
context. Our proposed method used three 16x16 patches, which
is 1/16 size of 64x64 patch. But as you can see in Table 1, our
method showed competitive RMSE score to single 64x64 patch
based method. And the time is almost twice faster. 16x16
single sliding window method is slightly faster than our
method. But our accuracy outperforms it. Relatively lower
speed is because of sequential cropping and resizing process.
Parallel processing could accelerate the speed of our method.
You can see the visualized detection and classification results
of our method in Figure 7.

IV. CONCLUSION

In this paper, we introduced the framework to detect small

animals in air-view image. There are three main contributions.

First, inputs with different viewpoint and resolution improved

speed without speed bottleneck. Second, fully utilized the

ability of GPU by collecting patches as input batch. It

significantly reduced processing time. And third, we devised

own re-training method using training dataset by collecting

false-true error patches. Our framework could be applied to

other works, which require detecting and classifying small

objects(e.g. face detection and age classification among many

audiences). Our future work is implementing CNN structure

that could consider wide context instead of small patches.

ACKNOWLEDGEMENT

 This research is supported by Ministry of Culture, Sports
and Tourism(MCST) and Korea Creative Content
Agency(KOCCA) in the Culture Technology(CT) Research &
Development Program 2017

REFERENCES

[1] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition”, ICLR 2015.

[2] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew
Rabinovich, “Going Deeper with Convolutions”, CVPR 2015.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep Residual
Learning for Image Recognition”, CVPR 2016.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Spatial
Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition, ECCV 2014.

[5] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal
Networks”, NIPS 2015.

[6] Liu, Wei and Anguelov, Dragomir and Erhan, Dumitru and Szegedy,
Christian and Reed, Scott and Fu, Cheng-Yang and Berg, Alexander C,
“SSD : Single Shot MultiBox Detector”, ECCV 2016.

[7] Diederik P. Kingma, Jimmy Ba, “Adam: A Method for Stochastic
Optimization”, ICLR 2015

[8] https://www.kaggle.com/c/noaa-fisheries-steller-sea-lion-population-
count/data

