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Abstract 
 

Visual-inertial odometry (VIO) for autonomous vehicles provides ego-motion estimates with the help of an inertial 

measurement unit (IMU). However, VIO in large-scale outdoor environments is limited in its ability to estimate 

translational motion owing to forward motion degeneracy. In this paper, we propose an approach to estimate the ego-

motion of a vehicle using a camera, an IMU, and a speedometer. The speed measurement model is incorporated into the 

Bayesian VIO framework, and a state re-initialization is applied based on the speed measurements. Experiments using the 

public KITTI dataset show the superiority of the proposed method compared to conventional VIO and stereo-based visual 

odometry. Furthermore, the proposed method achieves about 20 Hz frame rates for real-time autonomous driving. 

  

1. Introduction 

Odometry, which estimates the 6-DOF ego-motion, is a 

crucial technology for many computer vision and robotics 

applications. Over the last decade, visual-inertial odometry 

(VIO), which uses a monocular camera in conjunction with 

an inertial measurement unit (IMU), has been extensively 

studied for robotic navigation and autonomous driving in 

GPS-denied environments, such as urban, military, 

underwater, and indoor areas. Unlike monocular visual 

odometry, VIO provides scale information and produces 

trajectories with less drift compared to wheel odometry and 

inertial odometry. This is particularly advantageous in 

lightweight mobile systems owing to its compactness while 

maintaining a high level of performance. 

Studies on the use of VIO in autonomous vehicles have 

been recently conducted because cars are typically 

equipped with IMUs. However, even with the help of 

inertial measurements, VIO estimates are subject to scale 

drift in large-scale environments owing to forward motion 

degeneracy and the existence of distant feature points in 

translation estimations, as illustrated in [7]. In this study, 

we observed that the position drift of VIO estimates begins 

from drifts in the velocity estimates. Velocity estimates 

have a large influence on the position estimates because 

they are closely related to the state prediction process. 

Furthermore, previous VIO methods for autonomous 

driving require a large number of computations because 

they use heavy feature descriptors for feature detection and 

matching, such as SIFT, as in [5]. When VIO uses the 

FAST and KLT algorithms for fast feature detection and 

matching, it reduces the number of computations, but the 

scale drift of the translation estimates significantly worsens. 

Figure 1 shows that VIO provides scale-drifted velocity 

estimates while moving forward. 

To handle this problem, we incorporate a speedometer,  

 

 
Fig. 1 Speed estimates of VIO with FAST and KLT for sequence 1 used 

in our experiments. When the speed reaches greater than 5 m/s, the 
vehicle mostly moves forward during this sequence. 

 

which is included in most cars. The speed measurements 

essentially originate from the speed sensors of the wheels. 

Therefore, this study is a multimodal approach with three 

heterogeneous sensors: a monocular camera, an inertial 

sensor, and wheel speed sensors. 

Using these heterogeneous sensors, we estimate the 6-

DOF egomotion online in real-time, while removing the 

scale drift. Our method is based on the Bayesian filtering 

framework in which vehicle pose states are predicted based 

on inertial measurements and are updated using images and 

speed measurements. Furthermore, using speed 

measurements, we re-initialize the states when a vehicle 

stops because the VIO estimator can diverge when a 

vehicle restarts after stopping, owing to a rapid change in 

motion. 

2. Related works 

The fusion of visual and inertial measurement data has 

been theoretically validated, and various state estimation 

techniques have been previously applied [1]. Such methods 

typically require heavy computational power because of 

the estimation of 3D landmarks. As a result, the real-time 

use of VIO has become important, and an efficient 

algorithm has therefore been studied [2]. Furthermore, 

sliding-window approaches have been proposed for VIO 

[5], and optimization-based VIO methods have been 

studied [6] to improve the accuracy and robustness. 
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3. Method 

We estimate the ego-motion of vehicles using a 

speedometer and an IMU, which are commonly installed in 

vehicles, along with a monocular camera. The states of the 

vehicle poses x  are estimated using 6-DOF inertial 

measurements 
imuu , camera measurements 

camz , and 

speed measurements 
speedz  as  
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Based on the Bayesian inference described above, our 

algorithm formulates a nonlinear system model ( )imuf   

that describes the prediction of state vectors, and two 

nonlinear measurement models ( )camh   and ( )speedh  that 

describe the relations between the state vectors and 

measurements as  
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where 
, 1imu kq  is process noise, and 

,imu kr  and 
,speed kr  are 

measurement noises. 

3.1 State Vector 

Our state vector 
17x  is constructed as follows 

T
T T T
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where 3p  is the position of the IMU, 4q  is the 

orientation of the IMU, the subscript 1:3 indicates the 

index of three consecutive frames, and 3v is the 

velocity of the IMU. 3

a b  is the bias in the 

acceleration measurements, 3

g b  is the bias in the 

angular velocity measurements, and 
sb   is the bias in 

the speed measurements. 

3.2 System Model: IMU 

The system model ( )imuf   is formulated based on 

second-order motion dynamics using acceleration and 

angular velocity measurements { , }m m imua w u  as 
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where T  is the time interval between the inertial 

measurements and the quaternion kinematic function: 
3 4 4:   , which explains the variation in IMU 

orientation. Here, the process noise vector qimu is modeled 

using a zero-mean Gaussian distribution (0, )imu Q , and 

imuQ  is the process noise covariance. 

3.3 Measurement Model: Speedometer 

The speedometer provides a scalar measurement 

speedz   of the vehicle velocity, and contains biases and 

additive Gaussian noises. Therefore, the measurement 

model ( )speedh   is formulated as 

( ) W

speed k I sh b x v             (5) 

where rspeed is modeled using a zero-mean Gaussian 

distribution (0, )speedR  , and 
speedR  is the measurement 

noise covariance of the speedometer. Although the 

speedometer and IMU have different coordinates, the 

difference between speeds at both coordinates is negligible 

because they are rigidly connected. 

3.4 Measurement Model: Camera 

The camera measurement 4M

cam z  is generated 

from the corresponding feature points of three consecutive 
frames, where M represents the number of the 

corresponding feature points. 
camz  is constructed by 

stacking 
,cam iz  M number of times. The camera 

measurement 4

,cam i z from the i-th feature points is 

composed of two epipolar constraints between two frames 
and the tracked feature points of the third frame: 
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where 
1m , 

2m , and 3

3 m  are the corresponding 

feature points of the three consecutive frames in 

normalized camera coordinates. 3

2 l  is a line in the 

2nd frame, which is perpendicular to the epipolar line 

between the first and second frames. 
12F , 

23F , and 

{1,2,3}iT  are fundamental matrices and a trifocal tensor of 

three consecutive frames computed from states, 
respectively. ( )   represents the camera projection 

function to the image coordinates. The measurement noise 
4

,cam i r is modeled using a zero-mean Gaussian 

distribution, 
,(0, )cam i R . 

3.5 Zero Speed Re-Initialization 

When a vehicle departs after stopping, the states 

sometimes diverge because of the dramatic changes in 

motion. To handle this, we detect the instances of re-

initialization using the speed measurements as a clue to 

determine if the vehicle has stopped. We then re-initialize 

the states and state error co-variances while the vehicle 

stops. 

4. Experimental Results 

An ideal experiment setup would utilize raw 

measurements obtained from a camera, an IMU, and a 

speedometer within an actual vehicle. Unfortunately, 
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however, there are currently no publicly available 

autonomous vehicle datasets providing speed 

measurements. Therefore, we conducted quantitative and 

qualitative evaluations of the proposed method using the 

public KITTI dataset [3]. Although the KITTI dataset does 

not provide speed measurements of a vehicle, it contains 

velocity measurements of the inertial navigation system, 

allowing us to generate the speed measurements by adding 

Gaussian noise and bias to the magnitude of the velocity 

measurements. Furthermore, as a well-known autonomous 

driving benchmark, the KITTI dataset makes it easy to 

conduct a performance comparison with other existing 

methods. The methods used for comparison are near-online 

odometry methods that utilizes two or three frames to 

estimate the ego-motion of a vehicle: stereo visual 

odometry (VO-st [4]), visual-inertial odometry with SIFT 

and KLT (VIO-si [5], VIO-kl). Table 1 shows the errors in 

the rotation and translation estimates for each sequence. 

Essentially, VIO-si provides more accurate rotation and 

translation estimates than VO-st owing to the high-quality 

matching capabilities of SIFT. However, VIO-kl for real-

time operation produces less accurate estimates than VIO-

si, and shows large-scale drift in the translation estimates. 

Our method dramatically reduces the scale drift of VIO-kl 

with errors of less than 1 %, and incurs smaller rotation 

errors than VIO-kl despite using KLT for feature matching. 

In particular, our method does not diverged when starting 

after stopping as in sequence 7 unlike VIO-si,-kl. 

Moreover, it provides more accurate rotation estimates 

than VO-st. We qualitatively compared our method to the 

other odometry methods. Figure 2(a) shows that the 

estimated trajectory of our method is closest to the ground 

truth trajectory. Note that we do not use bundle 

adjustments based on local maps or loop closures. Figure 

2(b) illustrates the divergence of VIO-si and -kl odometry 

when starting after a period of stopping. As the figure 

indicates, our method does not diverge, and instead 

provides accurate trajectory estimates resulting from the 

zero speed re-initialization. The VO-st approach provides 

consistent ego-motion estimates utilizing depth 

information;. however, the accumulated rotation estimates 

are reflected in the trajectory comparison with the ground 

truth. Additionally, we evaluated the operating times of the 

compared methods in our experiments. This comparison 

was conducted using a PC with a 4.0 GHz Intel i7 CPU. 

We compared VIO-si, VIOkl, and the proposed method. 

The VIO-si method was implemented using 

MATLAB/C++, and both the proposed method and VIO-kl 

were implemented using C++. We also implemented the 

camera measurement model of the proposed method using 

multi-processing (mp) for boosting the real-time operation. 

As Table 2 shows, VIO-si takes too much time for feature 

matching; however, VIO-kl and the proposed method do 

not, owing to the use of FAST and KLT. Regarding outlier 

rejection, VIO-kl and the proposed method were found to 

be slower than VIO-si because they remove large residual 

features after updating all features, as in [7], instead of 

RANSAC. However, the operating time of the outlier 

rejection and state update can be reduced to one-half using 

multi-processing. Finally, we achieved about 20 H frame 

rates on the KITTI dataset. 

Table 1: Quantitative comparison with other odometry methods using 

the public KITTI dataset. 

Seq. 
Distance 

(m) 

Rotation error (deg/m) Translation error (%) 

VO-st VIO-si VIO-kl Ours VO-st VIO-si VIO-kl Ours 

1 2203.8 0.0059 0.0008 0.0026 0.0020 2.69 1.27 8.18 0.94 

2 1229.8 0.0055 0.0010 0.0030 0.0026 0.85 1.69 1.45 0.85 

3 4205.7 0.0068 0.0027 0.0087 0.0032 2.02 1.61 11.40 0.65 

4 1707.4 0.0052 0.0008 0.0028 0.0003 4.91 2.54 0.85 0.26 

5 5068.1 0.0051 0.0004 0.0015 0.0015 4.11 2.00 7.77 1.00 

6 3720.7 0.0065 0.0007 0.0026 0.0028 2.29 1.74 10.04 0.64 

7 665 0.0084 0.0488 0.1262 0.0049 2.99 42.19 38.89 0.71 

Total 

(1-6) 
18135.5 0.0059 0.0011 0.0038 0.0022 2.93 1.80 8.05 0.76 

 

Table 2. Timing comparison of each method. 
 Feature matching State prediction Outlier rejection State update 

VIO-si 1980 ms 3 ms 15 ms 45 ms 

VIO-kl 12 ms 1 ms 65 ms 47 ms 

Proposed 12 ms 1 ms 55 ms 33 ms 

Proposed-mp 12 ms 1 ms 20 ms 16 ms 

 

  
(a)                  (b) 

Fig. 2 Qualitative comparison of ego-motion estimates using the public 

KITTI dataset: (a) sequence 1 and (b) sequence 7 

5. Conclusion 

In this paper, we proposed a fast and accurate odometry 

method that incorporates a camera, an IMU, and a 

speedometer. Experiment results on the public KITTI 

dataset show the superiority of the proposed method 

compared to stereo-based visual odometry and visual-

inertial odometry. 
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